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A phase transition between the diamond (Fd�3m) and the lonsdaleite types

(P63/mmc) may be described as a deformation of a homogeneous sphere

packing with three contacts per sphere (type 3/10/o1) in the common subgroup

Pnna of Fd�3m and P63/mmc. The frequently observed transition between the

zinc-blende (F �43m) and the wurtzite types (P63mc) may be described in an

analogous way as a deformation of a heterogeneous sphere packing in the

subgroup Pna21. The proposed model guarantees the three-dimensional

connection during the whole transformation process. By this property it is

distinguished from other models.

1. Introduction

A transition between diamond-type and lonsdaleite-type

(hexagonal diamond) structures can be induced in silicon

wafers either by deformations as a result of indentation

(Eremenko & Nikitenko, 1972) or by implantation of ions

(Tan et al., 1981). Tan et al. (1981) presented a detailed

description of a possible transition mechanism that explains

the observed orientation relations between the two phases.

Their structure types are closely related to the zinc-blende

and to the wurtzite type, respectively. Whereas diamond- and

lonsdaleite-type structures contain only one kind of atom,

structures with the zinc-blende and wurtzite types are built up

of two different kinds. With the exception of some mercury

chalcogenides, AB compounds with four-coordinated atoms

crystallize either with zinc-blende- or with wurtzite-type

structures, depending on the ionicity. If the atoms show large

differences in electronegativity, the wurtzite type is preferred,

while compounds with mainly covalent bonds form zinc-

blende-type structures. Intermediate compounds may occur

with both structure types at ambient conditions. In order to

determine the stable phases, Yeh et al. (1992) calculated the

energy differences between the zinc-blende and the wurtzite

type for 13 binary semiconductors. Phase transformations

between the zinc-blende and the wurtzite type have often

been observed. For instance, ZnS undergoes a corresponding

transition at about 1293 K (Allen & Crenshaw, 1913).

Although in both structure types the neighbourhood of all

atoms is very similar, the structures are topologically different,

and it is not possible to deform them into each other without

breaking bonds and forming new ones. Therefore, the phase

transition is reconstructive. Nevertheless, single crystals can be

preserved during the transformation (Allen & Crenshaw,

1913; ShoÃ ji, 1933). Some papers deal with the corresponding

transition mechanism: ShoÃ ji (1931) proposed a model in which

planes of atoms perpendicular to one of the h111i directions of

zinc blende are shifted with respect to one another. He veri-

®ed that this mechanism takes place by taking Laue diffraction

photographs before and after the phase transition (ShoÃ ji,

1933). Sebastian et al. (1982) investigated the transformation

from wurtzite to zinc blende on single crystals. They took

oscillation photographs at room temperature after annealing

the ZnS crystals for 1 h at successively higher temperatures.

The authors found that the transition starts with the insertion

of deformation faults. By analysing experimental data on the

wurtzite to zinc-blende transformation, Pandey & Lele (1986)

inferred that shearing processes occur and, therefore, this

transition is martensitic.

The transition between the SiO2 modi®cations high-cristo-

balite and high-tridymite may also be related to the transition

from the diamond to the lonsdaleite type, as the Si atoms in

these structures form a diamond and a londsdaleite con®g-

uration, respectively. The O atoms are located in the middle

between all neighbouring Si atoms, so that each Si atom has

four O neighbours and each O atom has two Si neighbours.

The crystal structures of ice Ic and ice Ih belong to the high-

cristobalite type and the high-tridymite type, respectively, and

a corresponding phase transition that depends on temperature

has also been observed (cf. Shallcross & Carpenter, 1957).

Quite recently, possible transition models for pressure-

induced phase transformations in AB compounds have been

derived in investigating the symmetry relations between low-

and high-pressure phases. These studies include the transitions

from the NaCl to the CsCl type (Sowa, 2000a), from the zinc-

blende to the NaCl type (Sowa, 2000b), and from the wurtzite

to the NaCl type (Sowa, 2001). All these transformations are



described as being displacive because no bonds have to be

broken and only relatively small atomic shifts in combination

with metrical changes are necessary.

In the present study, an attempt is made to provide a similar

description of a reconstructive phase transition that implies

breaking of part of the bonds.

2. Symmetry relations

For the following investigations, the assumption is made that

only one kind of atom exists and that the corresponding

structures form homogeneous sphere packings, i.e. the trans-

formation between diamond and lonsdaleite types is consid-

ered. The results can easily be transferred to binary

compounds.

The diamond structure is described with symmetry Fd�3m. It

corresponds to the cubic invariant lattice complex cD

(International Tables for Crystallography, 1995, Vol. A, ch. 14)

and to a homogeneous sphere packing of type 4/6/c1 (Fischer,

1973; for symbols of sphere packings, see x3) with four

contacts per sphere. The atoms occupy the positions 8(a) �43m

0,0,0 (referred to origin choice 1).

Lonsdaleite crystallizes in space group P63/mmc. The

atomic arrangement corresponds to a con®guration of the

hexagonal univariant lattice complex E2z (International

Tables for Crystallography, 1995, Vol. A, ch. 14) and to a

homogeneous sphere packing of type 4/6/h2 (Fischer & Koch,

unpublished; cf. Fischer & Koch, 1994) that also has contact

number four. The atoms are situated at Wyckoff position 4( f)

3m. 1
3 ;

2
3 ; z with z = 1

16. The ideal atomic arrangement is

obtained for an axial ratio c/a = 2
3� 61=2 � 1.633.

The corresponding binary compounds AB crystallize in the

zinc-blende type with space group F �43m where the atoms

occupy the positions 4(a) �43m 0,0,0 and 4(c) �43m 1
4 ;

1
4 ;

1
4 , or in

the wurtzite type with space group P63mc where the atoms are

located at Wyckoff position 2(b) 3m. 1
3 ;

2
3 ; z with z = 0 and z =

3
8, respectively. In both structure types, the A and B atoms

together form heterogeneous sphere packings with four

contacts per sphere.

One may ask for a model of the phase transition from the

diamond to the lonsdaleite type that leaves all atoms

symmetrically equivalent and that preserves the three-

dimensional connection of the crystal structure during the

transition. Then, only one bond per atom is allowed to break

and the linkage of the atoms in the intermediate phase can be

described by a sphere packing with three contacts. There exists

only one lattice complex that enables such a transition. It

corresponds to the general position 8(e) x,y,z of Pnna and

contains cD as well as E2z as limiting complexes (cf. Fig. 1).

Furthermore, three nearest neighbours in the diamond

con®guration are equivalent to three nearest neighbours in the

ideal lonsdaleite arrangement and, in fact, a corresponding

three-connected sphere packing has been described in Pnna

(Koch & Fischer, 1995). It belongs to type 3/10/o1. The

undistorted diamond type is found in Pnna 8(e) x, y, z with x =
1
8, y = 1

8, z = 0 and a/c = 2 and b/c = 21=2, while, with x = 1
12, y = 1

16,

z = 1
4 and a/c = 31=2 and b/c = 2

3� 61=2, the ideal lonsdaleite type

is realized.

The analogous transition in AB compounds can be

described in the subgroup Pna21 of Pnna (Fig. 2) where the

zinc-blende and the wurtzite types occur with the following

positional parameters and axial ratios: A in 4(a) x = 1
8, y = 1

4, z =

0, B in 4(a) x = 3
8, y = 1

4, z = 3
4 and a/c = 21=2 and b/c = 1

2� 21=2 lead

to the undistorted zinc-blende type, whereas A in 4(a) x = 1
3, y =

0, z = 0 and B in 4(a) x = 1
3, y = 0, z = 5

8 and a/c = 3
4� 31=2 and b/c

= 1
4� 61=2 give the ideal wurtzite type. The three-connected

sphere packing, the deformation of which leads either to the

zinc-blende or to the wurtzite type, is a heterogeneous one.

3. Sphere packings in the surroundings of 3/10/o1

In the following, each sphere-packing type is designated by a

symbol k/m/fn as was ®rst introduced by Fischer (1971): k

means the number of contacts per sphere, m is the length of

the shortest mesh within the sphere packing, f indicates the

highest crystal family for a sphere packing of that type (c :

cubic; t : tetragonal; h : hexagonal/trigonal; o : orthorhombic),

and n is an arbitrary number.

Sphere packings of type 3/10/o1 can solely be generated

within the general position of Pnna (cf. Koch & Fischer, 1995),

i.e. within a ®ve-dimensional parameter ®eld (three coordi-
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Figure 1
Symmetry relation between the crystal structures of diamond and of
lonsdaleite. The transition from I41/amd to Imma requires an origin shift
by (0, ÿ 1

4, ÿ 1
8 ) with reference to the basis of I41/amd; the transition from

Cmcm to Pnna requires a shift by (ÿ 1
4, ÿ 1

4, 0) with reference to the basis
of Cmcm.



research papers

408 Sowa and Koch � Transition mechanisms Acta Cryst. (2001). A57, 406±413

nates and two axial ratios). Such a sphere packing occurs if the

original sphere with centre at x,y,z has three symmetrically

equivalent and equidistant neighbours with centres at

ÿx, ÿy, ÿz, at x, 1
2ÿ y, 1

2ÿ z, and at 1
2ÿ x, ÿy, z and squared

distances dA
2 = 4x2a2 + 4y2b2 + 4z2c2, dB

2 = ( 1
2ÿ 2y)2b2 +

( 1
2ÿ 2z)2c2 and dC

2 = ( 1
2ÿ 2x)2a2 + 4y2b2, respectively.

Equating the squared distances yields the sphere-packing

conditions for the type 3/10/o1,

16x2a2 � �8yÿ 1�b2 � �8zÿ 1�c2 � 0;

16z2c2 � �8xÿ 1�a2 � 0:
�1�

Therefore, the parameter region of type 3/10/o1 has three

degrees of freedom. It is bounded by 38 parameter regions

with fewer degrees of freedom belonging to 30 other types of

sphere packing with additional sphere contacts. In Fig. 3, the

parameter region for type 3/10/o1 together with its boundaries

is schematically represented by the Schlegel diagram of a

polyhedron with eight faces, 18 edges and 12 vertices. The

interior of this polyhedron corresponds to the parameter

region of 3/10/o1 whereas the faces, edges and vertices belong

to the adjacent parameter regions of sphere-packing types

with two degrees of freedom (2.1 to 2.8) or with one (1.1 to

1.18) or with no (0.1 to 0.12) degree of freedom, respectively.

Table 1 displays all symmetry operations that may give rise

to a contact between the original and a neighbouring sphere if

the former is located somewhere in the interior or at the

boundary of the parameter ®eld of type 3/10/o1. All sphere-

packing types in the surroundings of 3/10/o1 are listed in

Table 2. The symbol p.q in the ®rst column gives the number p

of degrees of freedom of the corresponding parameter region

and an arbitrary numbering q. The second column refers to

Table 1 and identi®es the centres of the neighbouring spheres

and the corresponding symmetry operations. The third column

shows the simplest (but not all) parameter conditions that

have to be ful®lled in addition to (1). In column 4, the

respective sphere-packing type is designated by its symbol

k/m/fn. As sphere packings of most of the types may also be

Figure 3
Sphere packings in the surroundings of 3/10/o1.

Table 1
Symmetry operations and coordinates of neighbouring points that may
give rise to sphere contacts if the original sphere is located in the interior
or at the boundary of the parameter ®eld of type 3/10/o1.

Neighbour Coordinates Symmetry operation

A ÿx, ÿy, ÿz �1(0, 0, 0)

B x, 1
2 ÿ y, 1

2 ÿ z 2(x, 1
4,

1
4 )

C 1
2 ÿ x, ÿy, z 2( 1

4, 0, z)

D x, 1
2 ÿ y, ÿ1

2 ÿ z 2(x, 1
4, ÿ1

4 )

E x, y, 1 + z t (0, 0, 1)

x, y, ÿ1 + z t (0, 0, ÿ1)

F ÿx, ÿy, 1 ÿ z �1(0, 0, 1
2 )

G x, ÿ1
2 ÿ y, 1

2 ÿ z 2(x, ÿ1
4,

1
4 )

H x, 1 + y, z t (0, 1, 0)

x, ÿ1 + y, z t (0, ÿ1, 0)

I ÿ x, 1 ÿ y, ÿz �1(0, 1
2, 0)

J 1
2 ÿ x, 1 ÿ y, z 2( 1

4,
1
2, z)

K 1
2 + x, y, ÿz a(x, y, 0)

ÿ1
2 + x, y, ÿz

L ÿ1
2 ÿ x, ÿ y, z 2(ÿ1

4, 0, z)

M 1
2 + x, y, 1 ÿ z a(x, y, 1

2 )

ÿ 1
2 + x, y, 1 ÿ z

N x, ÿ1
2 ÿ y, ÿ1

2 ÿ z 2(x, ÿ1
4, ÿ1

4 )

O ÿ1
2 ÿ x, 1 ÿ y, z 2(ÿ1

4,
1
2, z)

Figure 2
Symmetry relation between the crystal structures of zinc blende and of
wurtzite. The transition from Imm2 to Pmn21 requires an origin shift by
(0, ÿ 1

4, 0) with reference to the basis of Imm2; the transition from Pmn21

to Pna21 requires a shift by (ÿ 1
4, 0, 0) with reference to the basis of Pmn21.



generated within some supergroup of Pnna, the last column

shows the highest possible symmetry for each type.

Most of the sphere-packing types listed in Table 2 have been

described before: 3/10/o1 by Koch & Fischer (1995); 4/6/c1 by

Fischer (1973); 5/4/t6, 6/4/t2, 8/3/t1 and 9/3/t2 by Fischer

(1991a); 6/3/t5 by Fischer (1991b); 6/3/o1 and 8/3/h4 by Sowa

(2000b); 4/6/h2, 5/4/h5, 10/3/h2, 6/3/o2, 7/3/o1, 7/4/o1, 8/3/o2

and 9/3/o1 by Sowa (2001). The 13 further types occur only

within the orthorhombic crystal system and have not been

mentioned before.
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Figure 5
Variations of the axial ratios a/c and b/c depending on z along the
proposed transition path.

Figure 6
Variation of the sphere-packing density � depending on z along the
proposed transition path.

Figure 4
Variations of the coordinate parameters x and y depending on z along the
proposed transition path.

Figure 7
Sphere-packing deformations (a)±(e) and deformations of the corre-
sponding Dirichlet domains ( f )±( j ) along the proposed transition path
for different values of z. (a), ( f ) z = 0; (b), (g) z = 1

16; (c), (h) z = 1
8; (d), (i)

z = 3
16; (e), ( j ) z = 1

4. Blue and green lines in (a)±(e) show the breaking
bonds in the diamond and the ideal lonsdaleite con®gurations,
respectively. Accordingly, the blue and green coloured parts of the
Dirichlet domains in ( f )±( j ) are caused by the lost neighbours.
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4. The transition mechanism

The ideal diamond arrangement belongs to sphere-packing

type 4/6/c1 (2.1) with x = 1
8, y = 1

8, z = 0, a/c = 2 and b/c = 21=2,

whereas the ideal lonsdaleite arrangement belongs to 4/6/h2

(2.3) with x = 1
12, y = 1

16, z = 1
4, a/c = 31=2 and b/c = 2

3� 61=2 (cf.

above and Fig. 1). In principle, the transition between both

types may happen along any one-dimensional path through

the three-dimensional parameter ®eld of sphere-packing type

3/10/o1. To pick out a particular transition path, two further

parameter conditions have to be chosen in addition to (1). As

each sphere in a diamond or in a lonsdaleite arrangement has

12 spheres with equal distances in its second coordination

shell, the obvious procedure would be to postulate the

equality of as many of these distances as possible. Only six of

these distances may really become equal. They belong to three

pairs of neighbouring spheres that, owing to symmetry, are

always located at exactly equal distances from the reference

sphere: d1
2 = 4x2a2 + 1

4b
2 + 1

4c
2, d2

2 = 1
4a

2 + 4z2c2 and d3
2 = c2. On

condition that all three pairs are equidistant, the following

equations are valid:

d1 � d2 and d1 � d3: �2�

Apart from the absolute sizes of the spheres and of the unit

cell, the four equations of (1) and (2) describe a certain

Table 2
Sphere-packing types in the surroundings of 3/10/o1.

Neighbouring points Additional conditions Sphere-packing type Maximal symmetry

3.1 ABC 3/10/o1 Pnna 8(e)

2.1 ABCD x = 1
8, z = 0 4/6/c1 Fd�3m 8(a)

2.2 ABCE c = 1 5/4/o2 Pnna 8(e)

2.3 ABCF z = 1
4 4/6/h2 P63/mmc 4( f )

2.4 ABCG y = 0 4/4/o1 Imma 8(h)

2.5 ABCH b = 1 5/4/o3 Pnna 8(e)

2.6 ABCIJ y = 1
4 5/4/o1 Cmcm 8(g)

2.7 ABCK 5/3/o1 Pnna 8(e)

2.8 ABCL x = 0 4/4/o2 Cccm 8(l)

1.1 ABCDE x = 1
8, z = 0; c = 1 6/3/o1 Imma 4(e)

1.2 ABCDGN x = 1
8, y = z = 0; a = 4 6/4/c1 Pm�3m 1(a)

1.3 ABCDH x = 1
8, z = 0; b = 1 6/4/t2 I41/amd 4(a)

1.4 ABCDIJ x = 1
8, y = 1

4, z = 0; c = 2 6/4/c1 Pm�3m 1(a)

1.5 ABCDK x = 1
8, z = 0; a = 2 6/3/o1 Imma 4(e)

1.6 ABCEK c = 1 7/3/o4 Pnna 8(e)

1.7 ABCEG y = 0; c = 1 6/4/o1 Imma 8(h)

1.8 ABCEF z = 1
4; c = 1 6/3/o2 Cmcm 8( f )

1.9 ABCFKM z = 1
4 8/3/o2 Cmcm 8( f )

1.10 ABCFL x = 0, z = 1
4; a = c 5/4/t6 I4/mmm 4(e)

1.11 ABCFG y = 0, z = 1
4; b = 2 5/4/h5 P6/mmm 2(c)

1.12 ABCGL x = y = 0; a = 2 5/4/h5 P6/mmm 2(c)

1.13 ABCGH y = 0; b = 1 6/3/o3 Imma 8(h)

1.14 ABCHL x = 0; b = 1 6/4/o2 Cccm 8(l)

1.15 ABCHIJ y = 1
4; b = 1 7/3/o2 Cmcm 8(g)

1.16 ABCIJLO x = 0, y = 1
4; c = a+2 7/4/o1 Fmmm 8(g)

1.17 ABCIJK y = 1
4 7/3/o3 Cmcm 8(g)

1.18 ABCKL x = 0; a = 2ÿ1=2 6/3/t5 P�4m2 4( j )

0.1 ABCDEK 1
8,

1
8, 0; 2, 2�31=2, 1 8/3/t1 I41/amd 4(a)

0.2 ABCDEGN 1
8, 0, 0; 4, 31=2, 1 8/3/h4 P6/mmm 1(a)

0.3 ABCDGHN 1
8, 0, 0; 4, 1, 31=2 8/3/h4 P6/mmm 1(a)

0.4 ABCDHIJ 1
8,

1
4, 0; 2�31=2, 1, 2 8/3/h4 P6/mmm 1(a)

0.5 ABCDIJK 1
8,

1
4, 0; 2, 31=2, 2 8/3/h4 P6/mmm 1(a)

0.6 ABCEFG 1
2�31=2ÿ3

4, 0, 1
4; 2+31=2, 2, 1 7/3/o1 Cmmm 4(g)

0.7 ABCEFKM 1
12,

1
4�61=2ÿ1

2,
1
4; 31=2, 2+2

3�61=2, 1 10/3/h2 P63/mmc 4( f )

0.8 ABCFKLM 0, 1
4�21=2ÿ1

4,
1
4; 21=2, 2+21=2, 21=2 9/3/t2 I4/mmm 4(e)

0.9 ABCFGL 0, 0, 1
4; 2, 2, 2 6/4/c1 P4/mmm 1(a)

0.10 ABCGHL 0, 0, 1ÿ1
2�31=2; 2, 1, 2+31=2 7/3/o1 Cmmm 4(g)

0.11 ABCHIJLO 0, 1
4,

1
2�31=2ÿ3

4; 31=2, 1, 2+31=2 9/3/o1 Fmmm 8(g)

0.12 ABCIJKLO 0, 1
4,

1
4�21=2ÿ1

4; 21=2, 21=2, 2+21=2 9/3/t2 I4/mmm 4(e)



transition path, i.e. they pick out exactly one particular sphere

packing of type 3/10/o1 if, for example, a value of z is given.

Figs. 4, 5 and 6 show the variations depending on z of the

coordinate parameters x and y, the axial ratios a/c and b/c, and

the sphere-packing density �, respectively, along the proposed

transition path.

The absolute sizes of the spheres and of the unit cell may be

®xed in different ways, e.g. one may keep the radii of the

spheres constant along the whole transition path,

rsphere � 1
2 : �3�

As a consequence, the three shortest distances between

spheres also remain constant during the transition,

dA � dB � dC � 1: �4�
In this way, a possible transition path from a diamond

sphere packing via sphere packings of type 3/10/o1 into an

ideal lonsdaleite sphere packing is completely ®xed. Figs. 7(a)±

7(e) illustrate this sphere-packing deformation for some

selected z values. The three shortest distances per sphere

within a 3/10/o1 packing are drawn in black, the additional

fourth shortest distance in the diamond or in the lonsdaleite

arrangement is marked in blue or in green, respectively.

The sphere-packing deformation and the changes in the

second coordination shell are re¯ected in the deformation of

the corresponding Dirichlet domains (Figs. 7f±7j). For a

diamond con®guration, the Dirichlet domain (Fig. 7f) is a

truncated tetrahedron with four large hexagons corresponding

to the sphere-packing neighbours and 12 small triangular faces

belonging to the 12 neighbours from the second coordination

shell. As the lines joining the central atom with its neighbours

from the second coordination shell do not pass through the

corresponding faces, all these neighbours are so-called

indirect neighbours. The Dirichlet domain for an ideal

lonsdaleite arrangement (Fig. 7j) is also a truncated tetra-

hedron, but with three large hexagons, one large nonagon and

seven small triangles, i.e. only part of the 12 neighbours from

the second coordination shell give rise to faces of the Dirichlet

domain. Six of the triangular faces refer to indirect neigh-

bours, whereas the seventh triangle located opposite to the

nonagon belongs to a ®fth direct neighbour. In Figs. 7( f)±7( j),

the three large faces corresponding to the black lines in Figs.

7(a)±7(e) are coloured in grey, those faces belonging to the

blue and green lines are drawn in blue and green, respectively.

The green face develops from a vertex of the diamond poly-

hedron, the blue face from an edge of the lonsdaleite poly-

hedron.

As Fig. 7 illustrates, during the phase transition the relative

position of each sphere changes only little with respect to all

its neighbouring spheres but, simultaneously, the size and the

shape of the unit cell of Pnna varies.

Fig. 8 shows the dependence of the lattice parameters a, b

and c on z along the proposed transition path, and Fig. 9 shows

the corresponding changes of the volume V = abc of the unit

cell of Pnna (full lines). During the phase transition, V

increases by about 25.5%.

The changes of the distances between the original sphere

and some neighbouring spheres during the phase transition

are displayed in Fig. 10. It is noteworthy that one neighbour

from the ®rst coordination shell in a diamond con®guration

switches to the third coordination shell in an ideal lonsdaleite

con®guration, and vice versa. Furthermore, 10 of the 12

neighbours from the second coordination shell in a diamond

arrangement enter the second coordination shell in a lonsda-

leite arrangement. This means that 10 of the 12 nearest

neighbours of like atoms in an AB compound are preserved

during a transition from the zinc-blende to the wurtzite type

according to the proposed model.

Instead of (3), one may use one of the following conditions

to ®x the sizes of the spheres and the unit cell for each given

value of z,

c � c�z � 0� � c�z � 1
4 � � 2

3� 61=2 �5�
or

V � V�z � 0� � V�z � 1
4 � � 64

9 � 31=2: �6�
In comparison with (3), equation (5) leads to slightly

smaller lattice parameters (cf. dotted lines in Fig. 8) and to an

increase of the unit-cell volume by only 12.2% (cf. dotted line

in Fig. 9) during the phase transition. As a consequence, the

distances between the centres of spheres (Fig. 11) become

shorter.

Equation (6) yields even smaller lattice parameters (cf.

dashed lines in Fig. 8) and distances between spheres (Fig. 12)

than equation (5).

The real path for a particular phase transition, i.e. the

conditions that are ful®lled in addition to (1), cannot be

determined by a purely geometrical model, but possibly with

the aid of energy calculations.

5. Discussion

The proposed model for a phase transition from the diamond

to the lonsdaleite type has the following properties. During the

whole transformation process, all atoms remain symmetrically

equivalent with respect to the common subgroup Pnna of

Fd�3m and P63/mmc. Only one bond per atom in the diamond-
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Figure 8
Variations of the lattice parameters a, b and c depending on z along the
proposed transition path. Full lines refer to the additional condition
rsphere = 1

2, dotted lines to c = 2
3� 61=2, and dashed lines to V = 64

9 � 31=2.
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type structure has to be removed. All broken bonds run in

only two directions and are arranged in pairs of planes

perpendicular to the [100] direction of Pnna, i.e. perpendicular

to one of the h110i directions of Fd�3m. For each such pair of

neighbouring planes, all broken bonds are parallel (cf. Fig. 7a).

During the transition, the atomic arrangement corresponds to

a sphere packing of type 3/10/o1 and, therefore, the three-

dimensional connection of the crystal structure via bonds is

preserved. At a halfway stage of the transition, i.e. for z = 1
8,

each atom lies in the same plane with its three nearest

neighbours which form an isosceles triangle. The next two

neighbours are equidistant from the central atom (cf. Figs. 10±

12) and are located on different sides of this plane (cf. Fig. 7c).

Their distances are approximately 56% longer than the

shortest three. One of these neighbours originates from the

®rst coordination shell in the diamond-type structure, the

other gives rise to the newly formed bonds in the lonsdaleite-

type structure after the phase transition (z = 1
4 ) is ®nished.

These new bonds run in four different directions (cf. Fig. 7e).

The proposed transition model is diffusionless, i.e. only

relatively small movements of all atoms in a cooperative

manner are necessary. It results in the following orientation

relations for the diamond- and the lonsdaleite-type unit cells:

(i) [001]cub = [001]hex and (ii) [1�10]cub = [100]hex.

Such a transition path seems to be rather unlikely for

substances showing distinct stacking faults. Only if the original

crystals are relatively undisturbed may it possibly occur. For

compounds with stacking faults, e.g. for ZnS, other transition

mechanisms are more probable, e.g. a displacement of planes

Figure 11
Variations of the interatomic distances depending on z along the
proposed transition path. Additional condition: c = 2

3� 61=2. The blue and
the green lines mark the distance to the lost neighbour in a diamond
con®guration and in an ideal lonsdaleite con®guration, respectively.

Figure 12
Variations of the interatomic distances depending on z along the
proposed transition path. Additional condition: V = 64

9 � 31=2. The blue
and the green lines mark the distance to the lost neighbour in a diamond
con®guration and in an ideal lonsdaleite con®guration, respectively.

Figure 10
Variations of the interatomic distances depending on z along the
proposed transition path. Additional condition: rsphere = 1

2. The blue and
the green lines mark the distance to the lost neighbour in a diamond
con®guration and in an ideal lonsdaleite con®guration, respectively.

Figure 9
Variations of the volume V of a unit cell of Pnna depending on z along the
proposed transition path. The full line refers to the additional condition
rsphere = 1

2, the dotted line to c = 2
3� 61=2, and the dashed line to V =

64
9 � 31=2.



of atoms parallel to (111)cub or (001)hex, as proposed by ShoÃ ji

(1931), or a martensitic transformation, as described by

Pandey & Lele (1986). In both cases, the hexagonal c direction

runs parallel to a cubic h111i direction. Of course, it is

conceivable that the proposed transition model occurs for

other AB compounds that do not tend to form stacking faults.

In such a case, however, the phase transition should not be

induced by mechanical stress or deformation.

Eremenko & Nikitenko (1972) made rows of indentations

on platelets of silicon single crystals. They observed two-

dimensional defects which were interpreted as platelets of a

new silicon phase belonging to the lonsdaleite type. They

found the following orientation relations: (a) ��110�cub =

[100]hex and (b) [110]cub = [001]hex. Relation (a) corresponds to

relation (ii) for the transition model proposed in the present

paper, but (b) and (i) differ. The observed orientation of the

lonsdaleite-type silicon phase is rotated by an angle of 90�

around a cubic h110i direction with respect to the orientation

of the present model.

Tan et al. (1981) con®rmed the observations of Eremenko &

Nikitenko (1972) and proposed a corresponding transforma-

tion mechanism: similar to the present model, this mechanism

treats all atoms in an analogous way during the transition, i.e.,

in principle, it should be possible to describe it in some

common subgroup (other than Pnna) of Fd�3m and P63/mmc.

As in the present model, one bond per atom must be removed

and one new bond is formed, and all the broken bonds run in

only two directions. They are arranged in planes perpendicular

to one of the h110i directions of Fd�3m. All broken bonds out

of the same plane are parallel, those belonging to neigh-

bouring planes have different directions. In contrast to the

present model, the crystal structure splits up into layers

perpendicular, for example, to [110]cub or [001]hex during the

phase transition. All newly formed bonds are parallel to

[001]hex.

The transformation model proposed by Tan et al. (1981)

seems to require much stronger deformations of the crystal

structure than the present model. Therefore, the latter

mechanism may possibly be preferred if the phase transition is

induced more gently.

Referring to the phase transition between cristobalite and

tridymite, the present model implies that relatively few SiÐO

bonds must be broken, and that the O atoms have to move

only a short distance. Since with z = 1
8 the fourth and the ®fth Si

neighbours of each Si atom are equidistant, all O atoms

corresponding to the `blue bonds' in Fig. 7 should move

simultaneously to the centres of the `green bonds'. In this

respect, the present model resembles the `two-O-atom four-

centre transition path' recently proposed by Leoni & Nesper

(2000) for the quartz±tridymite transition.

We would like to thank Professor W. Fischer, Marburg,

Germany, for many helpful discussions.
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